WALL-E Forces and Energy Final

Name \qquad Period \qquad Date: \qquad

Scene 2 - Walk Home

1. To get to the BL Transit Train Station, WALL-E must travel 1 mile past the BnL (Buy-N-Large Superstore). The location of the train station is compared to a:

> Position Reference Point Motion Speed
2. WALL-E travels across the city. We can tell that WALL-E is in
 motion because his motion is measured relative to:
distance velocity our observation speed
3. A person sitting on the flying Axiom ship sees a WALL-E unit that appears to be stopped. The roach outside the Axiom ship sees both the Axiom ship and WALL-E moving. This describes: \qquad
4. WALL-E lowers the ramp to enter his home. The ramp is an example of what type of simple machine? \qquad
5. The sandstorm that hits WALL-E's truck travels 100 km in half an hour. What is the average speed of the storm in meters per second? \qquad .
6. The sandstorm changed direction and increased its speed. This is an example of a change in \qquad .
7. If you wanted to show the relationship between speed, time and distance, which formula would you use?

8. WALL-E left his truck to go to work. He went from $0 \mathrm{~m} / \mathrm{s}$ to $30 \mathrm{~m} / \mathrm{s}$ in 2 seconds. What is his acceleration?
$5 \mathrm{~m} / \mathrm{s}^{2} \quad 10 \mathrm{~m} / \mathrm{s}^{2} \quad 15 \mathrm{~m} / \mathrm{s}^{2} \quad 30 \mathrm{~m} / \mathrm{s}^{2}$
9. WALL-E makes cubes of garbage and starts to build a wall. As he makes the cubes, he pulls the garbage towards him and then lifts and pushes the finished cube onto the wall. He is using a \qquad which is a push or a pull.
10. WALL-E uses his hands to dig up the plant from the dirt. He is using his hands as a: lever wedge wheel \& axle pulley screw
11. WALL-E is chasing the dot of red light. They both move at different speeds while moving in the same direction. The two of them have different
accelerations speeds velocities position

12. WALL-E increases his speed as he approaches the red light. His acceleration is in the same/opposite direction of his motion.
13. The rock on WALL-E's head falls to the ground. This is due to \qquad .
14. The rock also has energy due to its position or shape. It is \qquad energy. When it falls to the ground is becomes \qquad energy.
15. Eve's rocket ship lifts off the ground. When the rocket takes off it pushes fuel exhaust downward. The exhaust pushes back on the rocket sending it upward. The exhaust exerts a force that is equal in size and in the opposite direction back on the first object. This is an example of the action and reaction forces related to Newton's \qquad law.
16. Newton's second law states that an increased force in the same direction results in an increased/decreased speed/acceleration

17. WALL-E and the grocery carts keep going in a straight line until they hit the windows and sliding glass door. The windows and door apply an unbalanced force that stops the forward motion of the grocery carts. \qquad is the reason the carts kept going in a straight line until a force acted upon them.
This is also related to Newton's
\qquad Law.
18. The metal pipes were at rest until WALL-E hits them. Then they fall on top of him. Name the law and write the definition that relates to this scenario.
19. EVE spins in a circle with an acceleration of $20 \mathrm{~m} / \mathrm{s}^{2}$. If she has a mass of 30 kg , what was the force with which she was spinning?
20 N
30 N
50 N
600 N
20. WALL-E uses a crowbar to open a compartment on Eve's side. This tool is an example of what type of simple machine? 1st class lever 2nd class lever 1st class lever 2nd class lever
\qquad 3 rd class lever

21. There is a benefit for using this simple machine. The number of times a machine multiplies the input force is called the machine's \qquad .
22. WALL-E pulls Eve with a string of lights. He is using a \qquad to change Eve's motion.
23. When EVE's rocket moves further away from Earth, the gravity disappears increases decreases is unaffected
24. Which force keeps the moon orbiting around the Earth?
Friction
Buoyancy
Gravity
Hydraulic
25. When WALL-E was on Earth his weight was 490 Newtons and he had a mass of 50 kg . On the Moon, what would happen to his mass and weight?
26. What is the definition of weight?
27. EVE's spaceship moves towards the Axiom at a speed of $28 \mathrm{~m} / \mathrm{s}$. As it arrives at the loading dock of the Axiom 15 minutes later, it slows to a speed of $6 \mathrm{~m} / \mathrm{s}$. What is the acceleration of EVE's spaceship?
$-5.3 \mathrm{~m} / \mathrm{s}^{2} \quad 8 \mathrm{~m} / \mathrm{s}^{2} \quad-0.024 \mathrm{~km} / \mathrm{hr}^{2} \quad-88 \mathrm{~m} / \mathrm{s}^{2}$

28. John falls out of his hover chair and is unable to move on his own. This is because the greater his \qquad the greater his or resistance to a change in his motion.
29. The Rogue Robots exert a force and break through the glass in the repair station. Which of these is the action force and which is the reaction force?

This is an example of Newton's \qquad Law of Motion.
30. Eve picks up WALL-E and moves him into the escape pod. How do we know that WALL-E has moved? (describe his motion using a stationary reference point!)
\qquad
\qquad
\qquad
\qquad
31. When WALL-E sets off the extinguisher, he accelerates. This is Newton's
\qquad Law of motion.
32. WALL-E accelerates in the opposite direction to the exhaust. This is Newton's \qquad Law. An action force and its reaction force are equal in
\qquad and opposite in \qquad .
33. Wall-E's mass is 50 kg and he is accelerating at 4.0 $\mathrm{m} / \mathrm{s}^{2}$. From this data you can tell that WALL-E is applying a force of \qquad N.
34. If WALL-E applied a force of 500 N to his 50 kg body, the acceleration would be \qquad $\mathrm{m} / \mathrm{s}^{2}$
35. If WALL-E's mass becomes greater, his acceleration would increase/decrease.
36. As soon as WALL-E shuts the extinguisher off, he continues to move at a constant velocity. This is Newton's \qquad Law.
37. Without the extinguisher, WALL-E would move towards the AXIOM ship which is larger than he is. The two factors that affect gravitational attraction between objects are \qquad and \qquad _.
38. John and Mary move their feet through the water in the pool. This is an example of \qquad friction.
39. They kick water onto the lifeguard robot causing it to short circuit. This is because the robot runs on \qquad energy.
40. WALL-E's wheels turn as he moves across the floor to find EVE. This is an example of \qquad friction.
41. MO the cleaning robot scrubs the floor removing the foreign contaminant left from WALL-E's wheels. This is an example of \qquad friction.
42. When the small Go-4 robot throws the boot, the boot changes position because the Go-4 robot exerts a \qquad on the boot.
43. Auto is based on a simple machine. It is a \qquad . This simple machine makes work easier by changing the \qquad or the \qquad of a force.
44. EVE and WALL-E get compacted into a large trash cube and are unable to move. This is an example of \qquad friction.

45. The vacuum cleaner rouge robot sneezes dust which causes him to move backwards. This is an example of Newton's \qquad Law.
46. The Captain pulls on Auto' s wheel with a force of 4 N , and Auto pulls on the wheel from the opposite direction with a force of 3 N . If there is no friction, which direction will the wheel turn? Towards the Captain or Auto? \qquad The net force on Auto's wheel is \qquad .
47. As the Axiom ship tilts, the passengers begin to fall out of their chairs and move across the floor. This is an example of \qquad friction.

[^0]49. The rogue robots rush out of the Axiom to follow EVE and WALL-E. Some move ahead of the others, therefore they have more kinetic energy due to their
the \qquad of an object.
50. WALL-E uses the sun's energy to charge his battery. He is converting energy into \qquad energy.

EXTRA CREDIT: Wall-E needs to clean up the garbage covering a large metropolitan city and place it into (skyscraper-sized) piles. He is able to compact the garbage into four-foot-square cubes. It takes him 4 seconds to collect and compact each cube. Assuming the entire city is 5 feet deep in garbage and has an area of $10 \mathrm{mi}^{2}$,

1. How long will it take him to stack it into piles?

2. Could this be done in the 700 years before humans return to Earth?

[^0]: 48. The Axiom ship would have more gravitational pull than WALL-E. This is because the more \qquad an object has, the greater the gravitational force.
